
Develop Applications Rapidly, Not
Recklessly. Why is a prototype
frequently thrown away? Probably
because minimal effort was expended
on design and architecture (the most
enduring qualities) and the most time
was spent on the user interface (the
most appealing quality).

Visible Developer's business objects
provide a rapid and well-constructed
start to a business application. A large
amount of time and effort are invested in
the design of generated business
objects. They demonstrate good
programming practices and sound
architectural structure. Generated
business objects are prototypes only in
the sense that they are not the final
product. They represent the starting
point of the evolution toward the final
business object.

With Visible Developer you quickly turn
prototypes into working business
applications.

Visible Developer Generates
Components That Can be Packaged
to Create a Single, 2-tier, or Even a 3-
tier Architecture Without Changing a
Single Line of Code. The building
blocks are created for you; you decide
how to assemble them. Grow your
business application over time without
rewriting a single line of code.

Visible Developer can generate a single
executable, a 2-tier or a 3-tier
application. The first choice places all
the objects in a single, monolithic project
– a good first step for newcomers. The
other choices divide objects into layers
according to the following scheme:

• User Interface Layer – contains all
the forms that participate in the
project. Objects in this layer know
nothing about business rules or data
access or database schemas. What
they do is communicate to the user;
forward requests to the second
layer, and return the results of those
requests to the UI.

• Logical Business Object Layer –
contains the business objects which
know all about business rules and
data validation and know nothing at

all about either the UI or the data
access mechanisms beneath them in
the layer three.

• Physical Business Object Layer –
contains the persistence objects that
read from, and write to the database.
The objects in this layer know all
about the physical storage underlying
the application including: column and
table names, relationships among
tables and referential integrity
constraints.

Focus Your Effort on Adding Business
Value. How much time does your
programming staff spend solving technical
versus business issues? How much of the
code in the final application is actual
business logic as opposed to code
required to move data between application
layers? Precise figures aren't available,
but intuition and experience suggests that
we spend far too much time sweating the
technical details to the detriment of the
business solution we are striving to
develop.

And the bad news is distributed
architectures have many more details. But
let Visible Developer provide those details
for you. The code generated by Visible
Developer is the predictable, but
absolutely necessary, code required to
implement distributed business objects. It
is code you would normally have to write
but now you don't. Your starting point is a
Visual Basic 6 or Visual Studio .NET
project with forms, standard modules, and
classes that combine to create a 3-tier
business object. You are free to
concentrate on adding business value,
which is what software development is
really about in the first place.

Scale Business Applications without
Rewriting Code. One size seldom fits
everyone and the same is true when it
comes to business applications. And, to
continue the analogy, even if it does fit
today there is no guarantee it will in the
future. Building a business application
once is an expensive proposition, so
designs that require us to rewrite even a
small portion of an application are not
acceptable.

Reduce Time Needed to Learn
Distributed Application Design.
Courses and books are useful
training methods but they do have
one shortcoming: examples from
books and classrooms seldom apply
to your business application.
Theory and guidelines are great, but
nothing beats putting them both to
work on your business application.
Visible Developer does that for you.
Visible Developer offers a degree of
tailoring no classroom or book can
possibly match because the
examples aren't really examples;
they are working code based on
your database schema.

Visible Developer training begins
with clearly documented and
executable code implementing your
business data in a distributed
architecture. If a programmer wants
to know how a user interface
interacts with the logical business
object, just step through the
generated code line by line. It's like
having a training course developed
around your application!

Make Maintenance Easier and
Predictable. When programmers
are artists, software maintenance
consumes large amounts of
resources for "restoration and
preservation" of their masterpieces.
Business objects generated by
Visible Developer are closer to
mass produced manufactured
goods rather than individual artistic
creations. But they are beautiful to
behold if you are responsible for
software maintenance.

Easily Reuse Business Logic with
New Interfaces

The user interface is the most
tangible and visible aspect of your
business application. It is also the
one most likely to require changes.
One business application may have
interfaces to accommodate
technology ranging from web
browsers to character-based
terminals. Even if your technology
base is uniform, multiple styles of
interfaces might be required to meet
the needs of different users ranging

from sophisticated analytical tools for
experts to simple point-and-click
designs for novices.

The one constant in the equation is the
underlying business information, rules,
and processes; in other words, the
business objects. Visible Developer's
business objects work with all styles of
user interfaces.

Visible Developer can generate different
UIs on the same objects (WinForms and
ASP.NET). Users can write custom
code patterns to generate other types of
UIs or extend the UIs that are supplied.

Learn and See How Distributed
Business Applications are Designed.
The quickest way to learn distributed
application development is by examining
working code. But why settle for sample
code about a fictitious business when
the code you learn form can be written
for your application? The classes
generated by Visible Developer are
extensively documented with
explanations.

Use a Variety of Interfaces. Visible
Developer business objects work with
any user interface that can create
ActiveX components. Develop your
user interface in a variety of languages,
(C++, Java, Visual Basic, Delphi, etc.) or
desktop applications (Word, Excel, any
product with VBA), or even web
browsers.

Import Existing Database Schemas.
The foundation of any business
application is the database design. You
work hard to create it, so Visible
Developer makes certain all of the
information contained in it is utilized.
Using the latest version of Microsoft's
ActiveX Data Objects (ADO), database
design information (tables, fields, data
types, keys, etc.) is extracted and stored
in a local repository. Generated code
matches your database design.

Add Design Information. Visible
Developer gives you control over how
code is generated. Information from the
database schema is augmented with
application design information to make
the generated code fit your
requirements as close as possible. Pick
the type of control used to display a
database field and provide a label

displayed next to it. Define business
operations that the business object will
provide. Identify relationships among
business objects and specify container
and contained objects.

Create a User Interface. Forms
complete with controls and code are
generated to provide a working user
interface that creates, updates, displays,
and deletes business objects. The
generated forms demonstrate techniques
for working with business objects and
provide a starting point for more elaborate
user interfaces.

Synchronize After Changing Database
Design. Added a new field? Changed the
key? Discovered new tables? No
problem, just synchronize your application
model with the new database schema and
regenerate the code.

Preserve Changes to Generated Code -
A Major Benefit. As long as new
statements are added between provided
edit points, all of your custom code is
saved and inserted in the correct place
when you regenerate. Edit points are
clearly marked points in the code, where
you might want to place customizations or
embellishments. The comments even
suggest what sort of code should go there.
This becomes significant on regeneration
of your objects. Any custom code added
at the edit points can be preserved and
incorporated in subsequent generations.
This feature allows developers to work
iteratively, refining their objects little by
little and regenerating the code several
times in the course of a project.

Use Guidelines to Extend Generated
Code. You will need to add business logic
to extend the code generated by Visible
Developer. To make this task easier,
numerous clearly marked edit points are
included in the generated code. Notes
prior to the edit point explain the types of
changes typically made. A companion
handbook explains how to extend the
generated code for common situations.

Recognition of Contained Objects
Another significant benefit of Visible
Developer is its recognition of contained
objects. A business object is not just a
single collection, but also one that can
have child collections of directly
associated records. When adding a join
to a business object, where there are
many records associated by that join, the

result is a new child collection in the
business object. For example, you
can have a Company object with a
child collection of Purchase Orders,
even though both entities are
fundamental and stand on their own.

Code Patterns Generate the
Application Framework. Eases
the Transition to .NET with
Developer’s template-like code
patterns which enable you to reuse
existing logic which can save you a
rewrite. You can develop once and
use the business logic in different
configurations without changing a
line of code.

Deploy a Single, Two, or Three
Tier Application. Package the
generated business objects to fit
your requirements without changing
a single line of code. Create one
executable containing the user
interface and all business object
classes for a single tier architecture.
As your requirements expand,
repackage the classes to create a
distributed architecture.

Interface to Front-end
Development Tool.
Visible Developer can export UML
class definitions of your business
objects which can be imported into
Visible Analyst. You can also take
class diagrams from Visible Analyst
and export them into you Visible
Developer Model Schema.

Visible Systems
201 Spring Street
Lexington, MA 02421

1-800-6VISIBLE

www.visible.com

Download a Free Evaluation
Copy Today.

